Mature Microsatellites: Mechanisms Underlying Dinucleotide Microsatellite Mutational Biases in Human Cells
نویسندگان
چکیده
Dinucleotide microsatellites are dynamic DNA sequences that affect genome stability. Here, we focused on mature microsatellites, defined as pure repeats of lengths above the threshold and unlikely to mutate below it in a single mutational event. We investigated the prevalence and mutational behavior of these sequences by using human genome sequence data, human cells in culture, and purified DNA polymerases. Mature dinucleotides (≥10 units) are present within exonic sequences of >350 genes, resulting in vulnerability to cellular genetic integrity. Mature dinucleotide mutagenesis was examined experimentally using ex vivo and in vitro approaches. We observe an expansion bias for dinucleotide microsatellites up to 20 units in length in somatic human cells, in agreement with previous computational analyses of germ-line biases. Using purified DNA polymerases and human cell lines deficient for mismatch repair (MMR), we show that the expansion bias is caused by functional MMR and is not due to DNA polymerase error biases. Specifically, we observe that the MutSα and MutLα complexes protect against expansion mutations. Our data support a model wherein different MMR complexes shift the balance of mutations toward deletion or expansion. Finally, we show that replication fork progression is stalled within long dinucleotides, suggesting that mutational mechanisms within long repeats may be distinct from shorter lengths, depending on the biochemistry of fork resolution. Our work combines computational and experimental approaches to explain the complex mutational behavior of dinucleotide microsatellites in humans.
منابع مشابه
Evolution of hypervariable microsatellites in apomictic polyploid lineages of Ranunculus carpaticola: directional bias at dinucleotide loci.
Microsatellites are widely used in genetic and evolutionary analyses, but their own evolution is far from simple. The mechanisms maintaining the mutational patterns of simple repeats and the typical stable allele-frequency distributions are still poorly understood. Asexual lineages may provide particularly informative models for the indirect study of microsatellite evolution, because their geno...
متن کاملDomain-level differences in microsatellite distribution and content result from different relative rates of insertion and deletion mutations.
Microsatellites (short tandem polynucleotide repeats) are found throughout eukaryotic genomes at frequencies many orders of magnitude higher than the frequencies predicted to occur by chance. Most of these microsatellites appear to have evolved in a generally neutral manner. In contrast, microsatellites are generally absent from bacterial genomes except in locations where they provide adaptive ...
متن کاملDefective mismatch repair, microsatellite mutation bias, and variability in clinical cancer phenotypes.
Microsatellite instability is associated with 10% to 15% of colorectal, endometrial, ovarian, and gastric cancers, and has long been used as a diagnostic tool for hereditary nonpolyposis colorectal carcinoma-related cancers. Tumor-specific length alterations within microsatellites are generally accepted to be a consequence of strand slippage events during DNA replication, which are uncorrected ...
متن کاملAscertainment bias cannot entirely account for human microsatellites being longer than their chimpanzee homologues.
A large majority of human microsatellite markers are longer than their homologues in chimpanzees, suggesting that more expansion mutations have occurred in the lineage leading to humans. However, such a length difference has also been explained as arising from the selection of unusually long microsatellites as genetic markers. In order to resolve this controversy and to establish the true sourc...
متن کاملEvidence for Widespread Convergent Evolution around Human Microsatellites
Microsatellites are a major component of the human genome, and their evolution has been much studied. However, the evolution of microsatellite flanking sequences has received less attention, with reports of both high and low mutation rates and of a tendency for microsatellites to cluster. From the human genome we generated a database of many thousands of (AC)(n) flanking sequences within which ...
متن کامل